Малошумящий стабилизатор напряжения Ultra Low Noise Linear Voltage Regulator

Поляков А.Е.

2010 г.

Аннотация

В данной работе предложена схема малошумящего линейного стабилизатора напряжения с указанием используемых компонентов и номиналов для ряда часто используемых напряжений и токов. Также приводится порядок расчета для произвольного выходного напряжения и номинального тока.

Основными особенностями предлагаемого решения являются сверхнизкий шум, широкий диапазон выходных напряжений и токов, достаточно высокое подавление пульсаций (PSRR) в большом частотном диапазоне.

Схема ориентирована на применение в задачах, где требования к уровню шума питания превышают характеристики стандартных линейных стабилизаторов. Как правило, обычные линейные стабилизаторы, выполненные в виде микросхем, имеют спектральную плотность шума около $100..300\,\mathrm{nV}/\sqrt{Hz}$. Предлагаемое решение позволяет получить менее $1\,\mathrm{nV}/\sqrt{Hz}$ при занимаемой площади около $200\,\mathrm{mm}^2$ и стоимости $200\,\mathrm$

1 Область применения

- Малошумящие синтезаторы частот
- Опорные генераторы
- Цепи питания микросхем DDS, ЦАП, АЦП
- Питание цифровых частотно-фазовых детекторов и делителей частоты
- Измерительная техника

¹Для транзисторов в корпусе SOT-23, микросхемы опорного напряжения в корпусе TSSOP-8, резисторов и конденсаторов в корпусе 0603, конденсаторов 47 µF в корпусе "A"

2 Основные характеристики

- ullet Низкий уровень шума: $1\,\mathrm{nV}/\sqrt{\mathrm{Hz}}$ @ $1\,\mathrm{kHz}$
- Высокое подавление пульсаций (PSRR): 70 dB @ 1 kHz, 50 dB @ 100 kHz
- Выходной ток: до 1 А
- Диапазон выходных напряжений: от 1.2 V до 20 V
- Занимаемая площадь (см. сноску 1 на предшествующей странице): 200 mm²

3 Электрическая схема

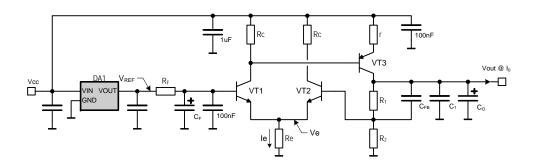


Рис. 1: Схема стабилизатора напряжения

На рисунке 1 изображена схема стабилизатора напряжения, состоящая из микросхемы опорного напряжения (Voltage Reference) DA1, RC-фильтра (R_F, C_F) , входного дифференциального каскада $(R_C, VT1, VT2, R_E)$, выходного каскада (VT3, r), обратной связи (R_1, R_2, C_{FB}) , выходного конденсатора C_O, C_1, V_{REF} — опорное напряжение, V_{CC} — входное питание схемы, V_{OUT} — выходное напряжение питания при номинальном токе нагрузки I_O . Ниже приведены используемые компоненты, в таблице 1 указаны номиналы для ряда выходных напряжений и токов.

DA1 для V_{OUT} <2.048 V V_{REF} =1.25 V: **LM4121IM5-1.2** (National Semiconductor), для 2.048 V< V_{OUT} <5 V V_{REF} =2.048 V: **ADR440ARMZ** (Analog Devices), V_{OUT} >5 V V_{REF} =3.3 V: **REF196GRUZ** (Analog Devices);

VT1, VT2 BC849C (NXP);

VT3 PBSS4021PT (NXP);

 R_F для номинальных токов $I_O < 200 \,\mathrm{mA} : 1 \,\mathrm{k}\Omega$, для $I_O < 200 \,\mathrm{mA} : 510 \,\Omega$;

Таблица 1: Номиналы компонентов и значеия напряжений для схемы на рис. 1

pric. 1									
$V_{OUT}@I_O*$	1.8 V@	1.8 V@	$3.3\mathrm{V}$	$3.3\mathrm{V}$	4 V@	5 V@	5 V@	5 V@	8 V@
	$50\mathrm{mA}$	$150\mathrm{mA}$	$50\mathrm{mA}$	$100\mathrm{mA}$	$75\mathrm{mA}$	$50\mathrm{mA}$	$100\mathrm{mA}$	$500\mathrm{mA}$	$150\mathrm{mA}$
R_C, Ω	300	330	620	300	330	620	300	51	330
R_E,Ω	110	110	560	270	270	560	270	43	510
r, Ω	3	1	3	1	2	3	1	0.01	1
R_1, Ω	887	887	1.21 k	1.21 k	1.91 k	$2.87\mathrm{k}$	$2.87\mathrm{k}$	$1.43\mathrm{k}$	$2.87\mathrm{k}$
R_2, Ω	$2.00\mathrm{k}$	$2.00\mathrm{k}$	$2.00\mathrm{k}$	$2.00\mathrm{k}$	$2.00\mathrm{k}$	$2.00{\rm k}$	$2.00\mathrm{k}$	$1.00\mathrm{k}$	$2.00\mathrm{k}$
V_{REF} , V	1.25	1.25	2.048	2.048	2.048	2.048	2.048	2.048	3.3
V_E,V	0.58	0.58	1.4	1.4	1.4	1.4	1.4	1.3	2.6
I_E , mA	5.25	5.25	2.5	5.1	5.1	2.5	5	30	5.2

^{*} При указанных номиналах максимальное значение выходного тока $I_{O_{max}}=2\cdot I_O,\ V_{CC}=V_O+0.5\,\mathrm{V}$ (кроме варианта 5 V@500mA, где $V_{CC}=V_O+0.3\,\mathrm{V}$)

 C_F электролитический конденсатор 47 μ **F**;

 C_{FB} конденсатор **10** μ **F**;

 C_O полимерный конденсатор 10 $\mu {\bf F}$ снизким ESR (0.1 Ω @ 400 kHz)

или керамический X5R;

 C_1 керамический конденсатор X5R **2.2-4.7** μ **F**.

4 Описание

На рис. 1 изображена схема малошумящего стабилизатора напряжения. На вход V_{CC} подается питающее напряжение (как правило, от обычного линейного стабилизатора), равное $V_O + 0.5 \,\mathrm{V}$ (кроме варианта 5 V $@500 \mathrm{mA}$, где $V_{CC} = V_O + 0.3 \,\mathrm{V}$). Значения, приведенные в таблице 1, расчитаны на номинальный ток I_O , максимально допустимый ток при этом $2I_O$ (при деградации PSRR на 10-15 dB и отклонении V_{OUT} не более -2.5%). Микросхема DA1 формирует опорное напряжение V_{REF} , обеспечивая подавление пульсаций и сравнительно небольшой уровень шума на выходе (около $20-50\,\mathrm{nV}/\sqrt{Hz}$). Далее опорный сигнал дополнительно фильтруется RCфильтром (R_F, C_F) . Дополнительный керамический конденсатор $100\,\mathrm{nF}$ X7R обеспечивает фильтрацию по высокой частоте. Затем сигнал подается на положительный вход дифференциального каскада (VT1, VT2), суммарный ток I_E которого задается резистором R_E , а к цепям коллекторов подключены резисторы R_C . С коллектора транзистора VT1 сигнал подается на базу мощного транзистора VT3, который обеспечивает дополнительное усиление входного сигнала и управление большим током, текущим через

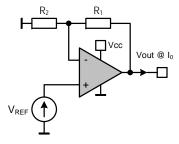


Рис. 2: Модель линейного стабилизатора

эммитер к коллектору. Коллектор транзистора VT3 подключен к резисторному делителю, формирующему сигнал обратной связи по постоянному току, подаваемый на отрицательный вход дифференциального каскада – базу транзистора VT2. Конденсатор C_{FB} обеспечивает более глубокую отрицательную обратную связь по переменному току, уменьшая тем самым уровень шума на выходе и увеличивая подавление пульсаций. Конденсатор C_O служит для дополнительной фильтрации в высокочастотной области (от $100~\mathrm{kHz}$).

По сути схема на транзисторах VT1-3 работает, как операционный усилитель с обратной связью (рис. 2), на положительный вход которого подается опорное напряжение, на отрицательный – обратная связь с резисторного делителя, а с выхода снимается напряжение $V_{REF}(1+\frac{R_1}{R_2})$.

Дифференциальный каскад на транзисторах использован вместо операционного усилителя по следующим причинам:

- достигается меньший уровень шума;
- обеспечивается больший запас стабильности отрицательной обратной связи;
- существенно ниже стоимость: 8 руб., для сравнения малошумящий операционный усилитель (ОУ) ADA4841 75 руб.

Недостатком дифференциального каскада, по сравнению с вариантом использования ОУ, является большее дифференциальное выходное сопротивление стабилизатора по постоянному току (Load Regulation), т.к. коэффициент усиления у ОУ по постоянному току (DC) гораздо выше.

4.1 Пояснения к выбору элементной базы

4.1.1 Транзисторы VT1, VT2

Транзисторы VT1, VT2 должны быть малошумящими и иметь достаточно высокий коэффициент усиления тока h_{FE} для того, чтобы можно было использовать слаботочные источники опорного напряжения (Voltage References). Также они должны иметь достаточную граничную частоту f_T для того,

чтобы обеспечить необходимое PSRR (Power Supply Rejection Ratio³) на средних частотах (когда еще не работает C_O). Таким образом, должны выполняться условия:

$$h_{FE} \gg \frac{I_E}{I_{REF_{max}}},$$

$$f_T \gtrsim h_{FE} \cdot f_{C_O}$$

где $I_{REF_{max}}$ — максимальный ток источника опорного напряжения, I_E — общий ток дифференциального каскада (2.5-30 mA, см. раздел 4.2.3 на с. 7), f_{C_O} — верхняя частота среза PSRR (в данном случае 100-400 kHz).

Примененные в схеме транзисторы BC849C имеют $h_{FE}=500$ (typ.), $f_T=100\,\mathrm{MHz}.$

4.1.2 Транзистор VT3

Во-первых, транзистор VT3 должен обладать низким напряжением насыщения $V_{CE_{sat}}$ при больших токах коллектора. В противном случае на нем будет рассеиваться слишком большая мощность. Во-вторых, он должен обладать большим коэффициентом усиления h_{FE} , чтобы не нагружать дифференциальный каскад. В-третьих, граничная частота f_T у него должна быть не меньше, чем у транзисторов VT1, VT2.

$$h_{FE} \gg \frac{I_O}{I_E},$$

где I_O — номинальный выходной ток стабилизатора, I_E — ток дифференциального каскада.

Примененный в схеме транзистор PBSS4021PT имеет $V_{CE_{sat}}=115\,\mathrm{mV}$ (typ.) при токе коллектора 1 A и токе базы $10\,\mathrm{mA};\ h_{FE}=400$ (typ.), $f_T=155\,\mathrm{MHz}.$

4.1.3 Источник опорного напряжения DA1

Максимальный выходной ток источника опорного напряжения должен быть выше тока базы транзистора VT1, а шум достаточно низким, чтобы на требуемой частоте с помощью RC-фильтра обеспечить подавление, сравнимое с собственным шумом стабилизатора на средних частотах.

$$\Phi_{REF} \ll 2\pi R_F C_F f_L \Phi_O, \tag{1}$$

где Φ_{REF} — спектральная плотность шума опорного сигнала, f_L — требуемая нижняя граничная частота PSRR, Φ_O — спектральная плотность шума стабилизатора на средних частотах. При $R_F{=}1\,\mathrm{k}\Omega$, $C_F{=}47\,\mathrm{\mu}\mathrm{F}$, $f_L{=}1\,\mathrm{kHz}$, $\Phi_O{=}1\,\mathrm{nV}/\sqrt{Hz}$ получим Φ_{REF} должен быть менее $300\,\mathrm{nV}/\sqrt{Hz}$ @ 1 kHz. Это выполняется для большинства источников опорного напряжения.

 $^{^{3}}$ Подавление пульсаций питания

При необходимости источник опорного напряжения можно заменить на резисторный делитель. Это существенно уменьшит стоимость, но в таком случае для обеспечения требуемого PSRR на низких частотах следует значительно увеличить емкость C_F до сотен микрофарад.

4.2 Расчет номиналов

Исходными данными для приведенных ниже расчетов являются выходное напряжение V_{OUT} , номинальный ток I_O , максимальный ток $I_{O_{max}}$ (будем считать $I_{O_{max}}=2I_O$, если не указано иное), опорное напряжение V_{REF} .

4.2.1 Сопротивления обратной связи R_1, R_2

В соответствии с моделью на рис. 2

$$\frac{R_1}{R_2} = \frac{V_{OUT}}{V_{REF}} - 1.$$

Для компенсации токов утечки дифференциального усилителя следует выполнить условие

$$\frac{R_1 R_2}{R_1 + R_2} \approx R_F. \tag{2}$$

Сопротивления следует выбирать из ряда Е96 с допуском 1%. Расчет R_F описан в разделе 4.2.4 на следующей странице.

4.2.2 Определение питающего напряжения V_{CC} и сопротивления r

Сопротивление r служит для улучшения PSRR вблизи граничной частоты f_{C_O} . Кроме того сопротивление r позволяет замерять ток потребления, что существенно упрощает отладку и тестирование. Рекомендуемое значение сопротивления

$$r \approx \frac{0.1\,\mathrm{V}}{I_{O_{max}}}.$$

Для обеспечения линейного режима транзистора необходимо

$$V_{CC} > V_{CE_{sat}}(I_{O_{max}}) + rI_{O_{max}},$$

где $V_{CE_{sat}}(I_{O_{max}})$ – кривая зависимости напряжения насыщения от тока коллектора VT3. С другой стороны при увеличении V_{CC} увеличивается мощность, рассеиваемая на транзисторе, поэтому

$$I_{O_{max}}(V_{CC} - rI_{O_{max}} - V_O) < P_{tot}, \tag{3}$$

где P_{tot} – максимальная мощность транзистора.

Для выбранного транзистора $V_{CE_{sat}} \lesssim 0.1\,\mathrm{V}$ при токе коллектора до 1 А и $I_C/I_B=100,~\mathrm{a}~P_{tot}{=}660\,\mathrm{mW}^4.$ Поэтому до тока 200 mA можно принять $V_{CC}=V_O+0.5\,\mathrm{V}.$

 $^{^4}T_{amb} \leq 25\,^{\circ}\mathrm{C},$ материал платы FR-4, контакт коллектора припаян к полигону площадью $1\,\mathrm{mm^2}$

4.2.3 R_C и R_E дифференциального каскада

Сначала следует расчитать ток дифференциального каскада I_E . Он должен быть достаточным для управления транзистором VT3. Следовательно,

$$I_E \gg \frac{I_{O_{max}}}{h_{FE}},$$

где h_{FE} — коэффициент усиления транзистора VT3. С другой стороны слишком большое значение I_E нежелательно, т.к. увеличивает собственное потребление схемы. При достаточном запасе напряжения коллектор-эммитер транзистора VT3 его $h_{FE}=400$, поэтому примем

$$I_E \approx 0.03 \cdot I_{O_{max}}.\tag{4}$$

Определив ток I_E , найдем значение R_E :

$$R_E = \frac{V_{REF} - 0.6 \,\mathrm{V}}{I_E},$$

где $0.6\,\mathrm{V}$ – напряжение база-эммитер транзисторов $VT1,\,VT2.$ Сопротивление R_C расчитывается по формуле

$$R_C = \frac{rI_O + 0.65 \,\mathrm{V}}{1/2I_E},$$

где $0.65\,\mathrm{V}$ – напряжение база-эммитер транзисторов VT3.

4.2.4 Фильтр R_F, C_F

Граничная частота фильтра расчитывается таким образом, чтобы удовлетворить выражению 1 на с. 5. Большое значение R_F выбирать не желательно, т.к. увеличивается погрешность выходного напряжения за счет тока базы транзистора VT1. Для заданной погрешности 1% необходимо

$$R_F < 0.01 \frac{h_{FE} V_{REF}}{I_E},$$

где h_{FE} – коэффициент усиления транзистора VT1. С учетом выражения 4 и значения $h_{FE}=500$ напишем

$$R_F < 166 \, \frac{V_{REF}}{I_{O_{max}}}$$

Для выходного тока менее $300\,\mathrm{mA}$ достаточно принять $R_F = 1\,\mathrm{k}\Omega$.

На конденсатор C_F существенных требований не накладывается, его ESR практически не влияет ни на шум, ни на PSRR, т.к. даже в случае нескольких десятков Ом шум такого сопротивления будет ниже основной полки на выходе.

При значениях шума опорного источника Φ_O и нижней граничной частоты f_L , указанных в разделе 4.1.3 на с. 5, в соответствии с выражением 1 емкость C_F должна быть не менее 47 μ F.

Рис. 3: Подавление пульсаций (PSRR)

4.2.5 Конденсатор обратной связи по переменному току C_{FB}

Конденсатор C_{FB} служит для увеличения PSRR на средних частотах и снижения уровня шума за счет повышения коэффициента обратной связи по переменному току (рис. 3). Нижняя граничная частота определяется выражением

$$f_L = \frac{1}{2\pi (R_1||R_2)C_{FB}}.$$

Таким образом, учитывая выражение 2 на с. 6 для f_L =100 Hz и R_F =1 k Ω имеем $C_{FB}\gg$ 1.6 μ F. В схеме использован номинал 10 μ F.

4.2.6 Выходной конденсатор C_O

Выходной конденсатор C_O обеспечивает подавление пульсаций на высоких частотах. Рекомендуется полимерный конденсатор емкостью не менее $10\,\mu\mathrm{F}$ с низким ESR (не более $0.1\,\Omega$ @ $400\,\mathrm{kHz}$) параллельно с керамическим конденсатором C_1 X5R $2.2\text{-}4.7\,\mu\mathrm{F}$. Использование полимерного конденсатора позволяет значительно увеличить PSRR вблизи f_{C_O} для вариантов стабилизатора с номинальными выходными токами более $150\text{-}200\,\mathrm{mA}$. Для вариантов стабилизаторов с меньшими токами конденсатор C_O можно не ставить, ограничившись конденсатором C_1 ($2.2\text{-}4.7\,\mu\mathrm{F}$).

Для дополнительного подавления на высоких частотах, а также обратного влияния высокочастотной импульсной нагрузки на цепь V_{CC} , можно применить схему на рис. 4. В качестве индуктивности L_O можно испольовать фильтр BLM21PG331SN1 (Murata Manufacturing). Его эквивалентная индуктивность на низких частотах составляет около $0.25\,\mu\text{H}$.

ESR выходного конденсатора практически не влияет на спектральную плотность шума на выходе, но расширяет шумовую полку, увеличивая интегральный шум.

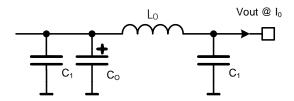


Рис. 4: Дополнительная фильтрация выхода

Таблица 2: Характеристики приведенных в таблице 1 схем

Параметр	Условия	мин.	макс.	Ед.	
	$1.8\mathrm{V}@50\mathrm{mA}$ 0.6				
	$1.8\mathrm{V@150mA}$	0.3		1	
	$3.3\mathrm{V}@50\mathrm{mA}$	0.7		1	
	$3.3\mathrm{V@100mA}$	0.3			
Load Regulation @ I_O	$4\mathrm{V@75mA}$	0.56		Ω	
	$5\mathrm{V}@50\mathrm{mA}$	1.1			
	$5\mathrm{V@100mA}$	0.6			
	$5\mathrm{V}@500\mathrm{mA}$	0.15			
	$8\mathrm{V@150mA}$	0.5			
Line Regulation $@I_O$	all parts	57	66	dB	
Line Regulation @ 10	$I_O < 150 \mathrm{mA}$				
	$150\mathrm{mA}{<}I_O$	50			
	1 kHz	63	70	— dB	
$ $ PSRR @ I_O	$10\mathrm{kHz}$	63	68		
	$f>100\mathrm{kHz}$	38	42		
Voltage Dropout @ I_O		0.3		V	
Input Voltage	при ограничении 3		20	V	
	на с. 6				

5 Типовые характеристики

В таблице 2 приведены результаты моделирования основных характеристик схем, приведенных в таблице 1 на с. 3.

На рисунках 5, 6 отображены результаты моделирования спектральной плотности шума на выходе стабилизатора для вариантов $5\,\mathrm{V@100\,mA}$ и $5\,\mathrm{V@500\,mA}$ соответственно при разных токах нагрузки — холостом ходе, номинальном и максимальном токе. Из графиков следует, что увеличение тока нагрузки практически не влияет на уровень выходного шума.

На рисунках 7, 8 отображены результаты моделирования подавления пульсаций (PSRR) от частоты при разных выходных токах для вариантов $5\,\mathrm{V@100\,mA}$ и $5\,\mathrm{V@500\,mA}$ соответственно. В первом варианте использован

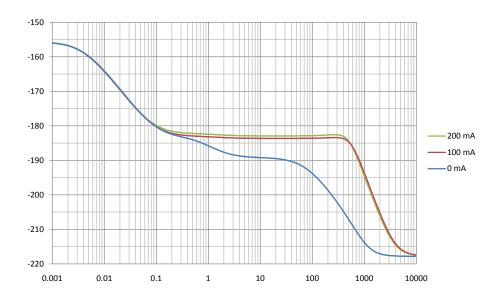


Рис. 5: Спектральная плотность шума в dBV/\sqrt{Hz} (RMS) от частоты в kHz (вариант $5\,\mathrm{V@100\,mA})$

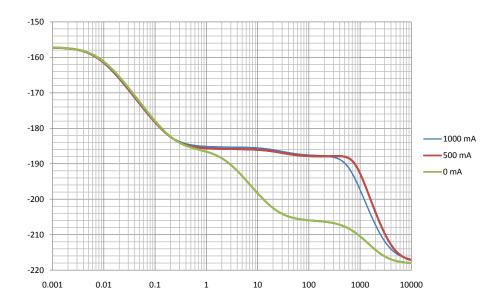


Рис. 6: Спектральная плотность шума в dBV/\sqrt{Hz} (RMS) от частоты в kHz (вариант $5\,\mathrm{V}@500\,\mathrm{mA})$

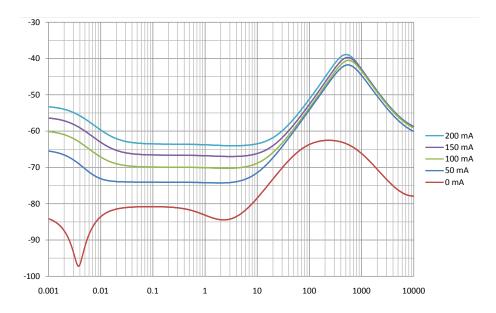


Рис. 7: Подавление пульсаций -PSRR в dB от частоты в kHz (вариант 5 V@100 mA при $C_O=0,~C_1=2.2~\mu\text{F},~ESR_{C_1}=0.01~\Omega)$

только выходной керамический конденсатор C_1 емкостью $2.2\,\mu\mathrm{F}^5$. Во втором случае – параллельное включение полимерного конденсатора емкостью $10\,\mu\mathrm{F}$ и керамического – $2.2\,\mu\mathrm{F}$.

На рисунках 9, 10, 11 представлены результаты моделирования зависимости выходного напряжения от тока нагрузки. Для номиналов, указанных в таблице 1 на с. 3 точка перегиба находится гораздо дальше $2I_O$, но следует учитывать, что при дальнейшем увеличении выходного тока снижается подавление пульсаций и увеличивается уровень шума.

На рисунке 12 изображена спектральная плотность собственного шума измерительного тракта при короткозамкнутом входе, а на рисунке 13 – с выхода стабилизатора. Разница практически не заметна. Это означает, что шум стабилизатора по крайней мере на $10\,\mathrm{dB}$ меньше собственного шума измерительного оборудования, т.е. не более $3\,\mathrm{nV}/\sqrt{Hz}$.

6 Преимущества и недостатки, существующие аналоги в интегральном исполнении

В таблице 3 приведены наиболее малошумящие линейные стабилизаторы в интегральном исполнении. Из приведенных выше микросхем следует отметить две, выпущенные в этом году, — LP5900 и HMC860. Они облада-

 $^{^5 \}rm Увеличение емкости до 10 <math display="inline">\rm \mu F$ позволяет при этом улучшить PSRR на частоте $500 \, \rm kHz$ на $10 \, \rm dB$

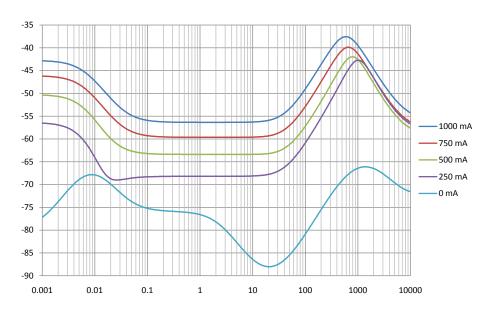


Рис. 8: Подавление пульсаций -PSRR в dB от частоты в kHz (вариант 5 V@500 mA при C_O =10 µF, ESR_{C_O} =0.1 Ω , C_1 =2.2 µF, ESR_{C_1} =0.01 Ω)

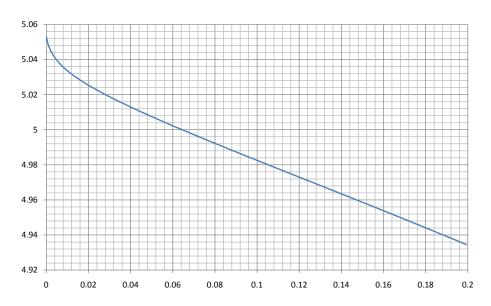


Рис. 9: Зависимость выходного напряжения в вольтах от выходного тока в амперах (вариант $5\,\mathrm{V}@100\,\mathrm{mA})$

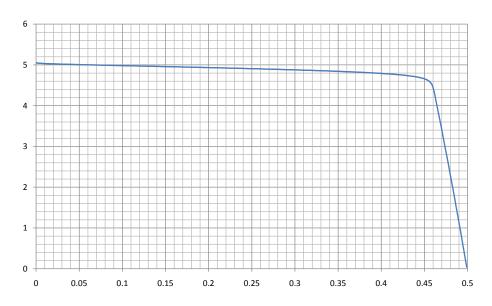


Рис. 10: Зависимость выходного напряжения в вольтах от выходного тока в амперах в широком диапазоне токов (вариант $5\,\mathrm{V@100\,mA})$

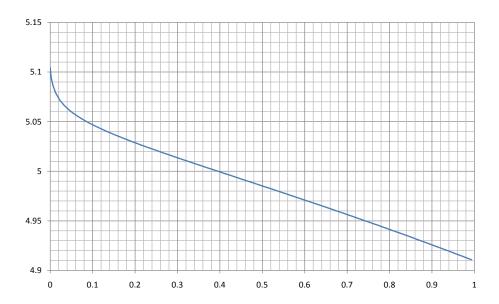


Рис. 11: Зависимость выходного напряжения в вольтах от выходного тока в амперах (вариант $5\,\mathrm{V}@500\,\mathrm{mA})$

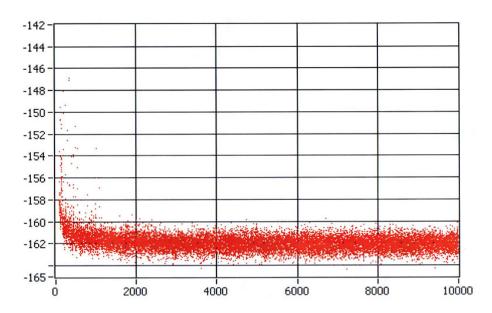


Рис. 12: Спектральная плотность собственного шума измерительного тракта в dBV/\sqrt{Hz} (RMS) от частоты в Hz (при короткозамкнутом входе)

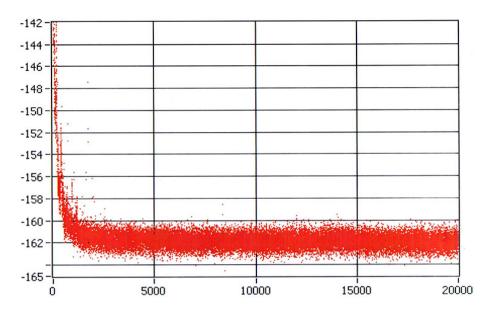


Рис. 13: Спектральная плотность шума на выходе в dBV/\sqrt{Hz} (RMS) от частоты в Hz (вариант $5\,\mathrm{V@100\,mA})$

Таблица 3: Малошумящие линейные стабилизаторы в интегральном испол-

нении

Part Number	umber Vendor		V_{OUT},V		-	out Noise, I/\sqrt{Hz}	
		min	max	mA	1 kHz	$10\mathrm{kHz}$	
ADP150	Analog Devices	1.8	3.3		50	30	
LP5900	National Semiconductor	1.5	4.5	150	40	20	
TPS7A4901	Texas Instruments	1.2	33		90	70	
NCP623MN	ON Semiconductor	2.8	4		220	100	
HMC860LP3E	Hittite	2.5	5.2	100	10	3	

ют самым низким шумом из серийно выпускаемых стабилизаторов в интегральном исполнении. Они имеют небольшую площадь (даже с учетом требуемой обвязки) и по характеристикам подходят для большинства задач, требующих малошумящего питания. Но встречаются и такие, которые они не перекрывают:

- Более высокий выходной ток. Пример: в синтезаторах частот применяются высокочастотные микросхемы DDS (например, AD9912) с низким фазовым шумом. Для обеспечения оптимальных характеристик требуется питание 1.8 V при токе до 250 mA со спектральной плотностью шума не более $10\text{-}20\,\text{nV}/\sqrt{Hz}$.
- Более высокое выходное напряжение. Пример: для широкополосных усилителей, применяемых в синтезаторах частот для буферизации, распределения и усиления формируемого сигнала, часто требуется питание выше 5 V. При этом для обеспечения низкого фазового шума необходим малошумящий источник питания.

В таких случаях предложенная схема позволяет решить проблему. В таблице 4 отображены преимущества и недостатки предложенного решения относительно современных малошумящих стабилизаторов в интегральном исполнении.

Существую также малошумящие линейные стабилизаторы, выполненные на основе дискретных компонентов. Например, в статье [3] приведена схема такого решения. Однако, занимаемая площадь на печатной плате настолько велика, что применение этого решения вряд ли целесообразно.

Другая схема приведена в работе [1]. Это, пожалуй, наиболее близкий аналог. Но у этой схемы есть два недостатка. Первый – отсутствует обратная связь по переменному току, что приводит к более высокому уровня шума за счет сопротивления резисторов в обратной связи. Второй – коллектор плеча дифференциального усилителя подключен только к базе выходного

Таблица 4: Сравнительные характеристики предложенной схемы и современных малошумящих стабилизаторов в интегральном исполнении

Параметр*	Предложенное решение	Микросхемы	
Спектральная плотность шума на 1 kHz	менее $1\mathrm{nV}/\sqrt{Hz}$	$7\text{-}40\mathrm{nV}/\sqrt{Hz}$	
Диапазон выходных напряжений	1.2-20 V	1.2-5.2 V	
Максимальный выходной ток	$1000\mathrm{mA}$	$150\mathrm{mA}$	
PSRR на 100 kHz	$40\text{-}50\mathrm{dB}$	$40\text{-}65\mathrm{dB}$	
Load Regulation	$0.2\text{-}0.6\mathrm{mV/mA}$	0.1-1 mV/mA	
Voltage Dropout	250 300 mV	150-300 mV	
Занимаемая площадь (с учетом обвязки)	$200\mathrm{mm}^{2}$	30-70 mm²	

^{*}Зеленым отмечены преимущества, красным – недостатки

транзистора, это существенно ухудшает частотные характеристики, и, как следствие, PSRR на высоких частотах.

Еще один вариант предложен компанией Maxim Integrated Products на базе малошумящего операционного усилителя [4].

В целом интерес к сверхмалошумящим источникам питания за последнее время не только не упал, но и, пожалуй, даже вырос. В пользу этого заключения можно привести следующие факты:

- Для современных линейных стабилизаторов обязательным параметром, приводимым в документации, является спектральная плотность шума (ранее приводился только интегральный шум).
- У многих производителей появился специальный раздел под названием "Ultra Low Noise Voltage Regulators".
- Микросхемы, вышедшие в этом году, имеют шум в 100 раз ниже, чем ранее, при практически том же уровне технологии.
- Предлагаются новые схемотехнические решения, ориентированные на интегральное исполнение [5, 6]. Например, на основе результатов, полученных в работе [2] была выпущена замечательная микросхема LP5900.

Это объясняется тем, что появились компоненты с потенциально очень высокими характеристиками, качество питания которых оказывается существенным фактором. Это, например, в полной мере относится к сверхмалошумящим опорным генераторам компании Wenzel, для питания которых при тестировании используются химические источники питания с плотностью шума менее $1\,\mathrm{nV}/\sqrt{Hz}$. То же самое относится и к высокочастотным микросхемам DDS, делителям частоты, усилителям тактового сигнала, цифровым фазовым детекторам, активным петлевым фильтрам.

Список литературы

- [1] Vaclav Papez, Stanislava Papezova, "Low Noise DC Power Supplies", XIX IMEKO World Congress Fundamental and Applied Metrology, Lisbon, Portugal, September 6-11, 2009
- [2] Mannama, V.; Sabolotny, R.; Strik, V.; , "Ultra low noise low power LDO design," Baltic Electronics Conference, 2006 International , vol., no., pp.1-4, 2-4 Oct. 2006
- [3] Isaac Sibson, "Precision Voltage Regulation for Ultra-low Noise Applications", AN51, Zetex Semiconductors, Issue 1 October 2007
- [4] "Ultra-Low-Noise LDO Achieves $6\,\mathrm{nV}/\sqrt{Hz}$ Noise Performance", App. Note 3657, Maxim Integrated Products, Dec. 22, 2005
- [5] Liu Zhiming, Fu Zhongqian, Huang Lu and Xi Tianzuo, "A 1.8 V LDO voltage regulator with foldback current limit and thermal protection", Journal of Semiconductors, Volume 30, Number 8, 2009
- [6] Jianping Guo Ka Nang Leung, "A sub-1µA improved-transient CMOS low-dropout regulator without minimal ESR requirement", TENCON 2009 2009 IEEE Region 10 Conference, 23-26 Jan. 2009